Tidal Decay of Close Planetary Orbits
نویسندگان
چکیده
The 4.2-day orbit of the newly discovered planet around 51 Pegasi is formally unstable to tidal dissipation. However, the orbital decay time in this system is longer than the main-sequence lifetime of the central star. Given our best current understanding of tidal interactions, a planet of Jupiter’s mass around a solar-like star could have dynamically survived in an orbit with a period as short as ∼ 10 hr. Since radial velocities increase with decreasing period, we would expect to find those planets close to the tidal limit first and, unless this is a very unusual system, we would expect to find many more. We also consider the tidal stability of planets around more evolved stars and we re-examine in particular the question of whether the Earth can dynamically survive the red-giant phase in the evolution of the Sun. Subject headings: Planets and Satellites: General — Solar System: General — Stars: Planetary Systems — Sun: Solar-terrestrial Relations
منابع مشابه
Secular Orbital Evolution of Compact Planet Systems
Recent observations have shown that at least some close-in exoplanets maintain eccentric orbits despite tidal circularization timescales that are typically much shorter than stellar ages. We explore gravitational interactions with a more distant planetary companion as a possible cause of these unexpected nonzero eccentricities. For simplicity, we focus on the evolution of a planar two-planet sy...
متن کاملOn the Origins of Eccentric Close-in Planets
Strong tidal interaction with the central star can circularize the orbits of close-in planets. With the standard tidal quality factor Q of our solar system, estimated circularization times for close-in extrasolar planets are typically shorter than the ages of the host stars. While most extrasolar planets with orbital radii a . 0.1AU indeed have circular orbits, some close-in planets with substa...
متن کاملEmpirical evidence for tidal evolution in transiting planetary systems
Most transiting planets orbit very close to their parent star, causing strong tidal forces between the two bodies. Tidal interaction can modify the dynamics of the system through orbital alignment, circularisation, synchronisation, and orbital decay by exchange of angular moment. Evidence for tidal circularisation in close-in giant planet is well-known. Here we review the evidence for excess ro...
متن کاملExponential law as a more compatible model to describe orbits of planetary systems
According to the Titus-Bode law, orbits of planets in the solar system obey a geometric progression. Many investigations have been launched to improve this law. In this paper, we apply square and exponential models to planets of solar system, moons of planets, and some extra solar systems, and compare them with each other.
متن کاملObliquity Tides on Hot Jupiters
Obliquity tides are a potentially important source of heat for extrasolar planets on close-in orbits. Although tidal dissipation will usually reduce the obliquity to zero, a nonzero obliquity can persist if the planet is in a Cassini state, a resonance between spin precession and orbital precession. Obliquity tides might be the cause of the anomalously large size of the transiting planet HD 209...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996